Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

Dorrain Yanwen Low, Pierre Micheau, Ville Mikael Koistinen, Kati Hanhineva, Laszlo Abranko, Ana Rodriguez-Mateos, Andreia Bento da Silva, Christof van Poucke, Conceicao Almeida, Cristina Andres-Lacueva, Dilip K. Rai, Esra Capanoglu, Francisco A. Tomas Barberan, Fulvio Mattivi, Gesine Schmidt, Gozde Gurdeniz, Katerina Valentov, Letizia Bresciani, Lucie Petraskova, Lars Ove DragstedMark Philo, Marynka Ulaszewska, Pedro Mena, Raul Gonzalez-Dominguez, Rocio Garcia-Villalba, Senem Kamiloglu, Sonia de Pascual-Teresa, Stephanie Durand, Wieslaw Wiczkowski, Maria Rosario Bronze, Jan Stanstrup, Claudine Manach

Research output: Contribution to journalArticlepeer-review

Abstract

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to nbsp;predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29 ndash;103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03 ndash;0.76 min and interval width of 0.33 ndash;8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet rsquo;s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
Original languageEnglish
JournalFOOD CHEMISTRY
Volume357
ISSN0308-8146
DOIs
Publication statusPublished - 30-Sept-2021

Keywords

  • Predicted retention time
  • Metabolomics
  • Plant food bioactive compounds
  • Metabolites
  • Data sharing
  • UHPLC

Fingerprint

Dive into the research topics of 'Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds'. Together they form a unique fingerprint.

Cite this