TY - JOUR
T1 - Diversity and evolution of the P450 family in arthropods
AU - Dermauw, Wannes
AU - Van Leeuwen, Thomas
AU - Feyereisen, René
N1 - Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - The P450 family (CYP genes) of arthropods encodes diverse enzymes involved in the metabolism of foreign compounds and in essential endocrine or ecophysiological functions. The P450 sequences (CYPome) from 40 arthropod species were manually curated, including 31 complete CYPomes, and a maximum likelihood phylogeny of nearly 3000 sequences is presented. Arthropod CYPomes are assembled from members of six CYP clans of variable size, the CYP2, CYP3, CYP4 and mitochondrial clans, as well as the CYP20 and CYP16 clans that are not found in Neoptera. CYPome sizes vary from two dozen genes in some parasitic species to over 200 in species as diverse as collembolans or ticks. CYPomes are comprised of few CYP families with many genes and many CYP families with few genes, and this distribution is the result of dynamic birth and death processes. Lineage-specific expansions or blooms are found throughout the phylogeny and often result in genomic clusters that appear to form a reservoir of catalytic diversity maintained as heritable units. Among the many P450s with physiological functions, six CYP families are involved in ecdysteroid metabolism. However, five so-called Halloween genes are not universally represented and do not constitute the unique pathway of ecdysteroid biosynthesis. The diversity of arthropod CYPomes has only partially been uncovered to date and many P450s with physiological functions regulating the synthesis and degradation of endogenous signal molecules (including ecdysteroids) and semiochemicals (including pheromones and defense chemicals) remain to be discovered. Sequence diversity of arthropod P450s is extreme, and P450 sequences lacking the universally conserved Cys ligand to the heme have evolved several times. A better understanding of P450 evolution is needed to discern the relative contributions of stochastic processes and adaptive processes in shaping the size and diversity of CYPomes.
AB - The P450 family (CYP genes) of arthropods encodes diverse enzymes involved in the metabolism of foreign compounds and in essential endocrine or ecophysiological functions. The P450 sequences (CYPome) from 40 arthropod species were manually curated, including 31 complete CYPomes, and a maximum likelihood phylogeny of nearly 3000 sequences is presented. Arthropod CYPomes are assembled from members of six CYP clans of variable size, the CYP2, CYP3, CYP4 and mitochondrial clans, as well as the CYP20 and CYP16 clans that are not found in Neoptera. CYPome sizes vary from two dozen genes in some parasitic species to over 200 in species as diverse as collembolans or ticks. CYPomes are comprised of few CYP families with many genes and many CYP families with few genes, and this distribution is the result of dynamic birth and death processes. Lineage-specific expansions or blooms are found throughout the phylogeny and often result in genomic clusters that appear to form a reservoir of catalytic diversity maintained as heritable units. Among the many P450s with physiological functions, six CYP families are involved in ecdysteroid metabolism. However, five so-called Halloween genes are not universally represented and do not constitute the unique pathway of ecdysteroid biosynthesis. The diversity of arthropod CYPomes has only partially been uncovered to date and many P450s with physiological functions regulating the synthesis and degradation of endogenous signal molecules (including ecdysteroids) and semiochemicals (including pheromones and defense chemicals) remain to be discovered. Sequence diversity of arthropod P450s is extreme, and P450 sequences lacking the universally conserved Cys ligand to the heme have evolved several times. A better understanding of P450 evolution is needed to discern the relative contributions of stochastic processes and adaptive processes in shaping the size and diversity of CYPomes.
U2 - 10.1016/j.ibmb.2020.103490
DO - 10.1016/j.ibmb.2020.103490
M3 - A1: Web of Science-article
C2 - 33169702
SN - 0965-1748
VL - 127
SP - 103490
JO - Insect Biochemistry and Molecular Biology
JF - Insect Biochemistry and Molecular Biology
ER -