TY - JOUR
T1 - Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol
AU - Van Wesemael, D.
AU - Vandaele, L.
AU - Ampe, B.
AU - Cattrysse, H.
AU - Duval, S.
AU - Kindermann, M.
AU - Fievez, V
AU - De Campeneere, S.
AU - Peiren, N.
PY - 2019/2
Y1 - 2019/2
N2 - The aim of this work was to determine the effect of 3-nitrooxypropanol (3-NOP) on the enteric methane (CH4) emissions and performance of lactating dairy cows when mixed in with roughage or incorporated into a concentrate pellet. After 2 pretreatment weeks without 3-NOP supplementation, 30 Holstein Friesian cows were divided into 3 homogeneous treatment groups: no additive, 3-NOP mixed in with the basal diet (roughage; NOPbas), and 3-NOP incorporated into a concentrate pellet (NOPconc). The pretreatment period was followed by a 10-wk treatment period in which the NOPbas and NOPconc cows were fed 1.6 g of 3-NOP/cow per day. After the treatment period, a 2-wk washout period followed without 3-NOP supplementation. The CH4 emissions were measured using a GreenFeed unit (C-Lock Inc., Rapid City, SD) installed in a freestall with cubicles during the entire experimental period. On average for the total treatment period and compared with the no-additive group, CH4 production (g/d) was 28 and 23% lower for NOPbas and NOPconc, respectively. Methane yield (g/kg of dry matter intake) and methane intensity (g/kg of milk) were 23 and 24% lower for NOPbas, respectively, and 21 and 22% lower for NOPconc, respectively. No differences were found between NOPbas and NOPconc. Moreover, supplying 3-NOP did not affect total dry matter intake, milk production, or milk composition. The results of this experiment show that 3-NOP can reduce enteric CH4 emissions of dairy cattle when incorporated into a concentrate pellet and that this reduction is not different from the effect of mixing in 3-NOP with the basal diet (roughage). This broadens the possibilities for using 3-NOP in the dairy sector worldwide, as it is not always feasible to provide an additive mixed in with the basal diet.
AB - The aim of this work was to determine the effect of 3-nitrooxypropanol (3-NOP) on the enteric methane (CH4) emissions and performance of lactating dairy cows when mixed in with roughage or incorporated into a concentrate pellet. After 2 pretreatment weeks without 3-NOP supplementation, 30 Holstein Friesian cows were divided into 3 homogeneous treatment groups: no additive, 3-NOP mixed in with the basal diet (roughage; NOPbas), and 3-NOP incorporated into a concentrate pellet (NOPconc). The pretreatment period was followed by a 10-wk treatment period in which the NOPbas and NOPconc cows were fed 1.6 g of 3-NOP/cow per day. After the treatment period, a 2-wk washout period followed without 3-NOP supplementation. The CH4 emissions were measured using a GreenFeed unit (C-Lock Inc., Rapid City, SD) installed in a freestall with cubicles during the entire experimental period. On average for the total treatment period and compared with the no-additive group, CH4 production (g/d) was 28 and 23% lower for NOPbas and NOPconc, respectively. Methane yield (g/kg of dry matter intake) and methane intensity (g/kg of milk) were 23 and 24% lower for NOPbas, respectively, and 21 and 22% lower for NOPconc, respectively. No differences were found between NOPbas and NOPconc. Moreover, supplying 3-NOP did not affect total dry matter intake, milk production, or milk composition. The results of this experiment show that 3-NOP can reduce enteric CH4 emissions of dairy cattle when incorporated into a concentrate pellet and that this reduction is not different from the effect of mixing in 3-NOP with the basal diet (roughage). This broadens the possibilities for using 3-NOP in the dairy sector worldwide, as it is not always feasible to provide an additive mixed in with the basal diet.
KW - 3-nitrooxypropanol
KW - dairy cow
KW - methane
KW - greenhouse gas emission reduction
UR - http://www.mendeley.com/research/reducing-enteric-methane-emissions-dairy-cattle-two-ways-supplement-3nitrooxypropanol
U2 - 10.3168/jds.2018-14534
DO - 10.3168/jds.2018-14534
M3 - A1: Web of Science-article
SN - 0022-0302
VL - 102
SP - 1780
EP - 1787
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 2
ER -