TY - JOUR
T1 - Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell
AU - De Gusseme, Bart
AU - Soetaert, Maarten
AU - Hennebel, Tom
AU - Vanhaecke, Lynn
AU - Boon, Nico
AU - Verstraete, Willy
N1 - © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
PY - 2012
Y1 - 2012
N2 - Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles ('bio-Pd') were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio-Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l(-1) was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2-anilinophenylacetate (APA). Through the addition of -0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 µg diclofenac l(-1) resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio-Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point-sources such as hospital WWTPs.
AB - Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles ('bio-Pd') were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio-Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l(-1) was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2-anilinophenylacetate (APA). Through the addition of -0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 µg diclofenac l(-1) resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio-Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point-sources such as hospital WWTPs.
U2 - 10.1111/j.1751-7915.2011.00325.x
DO - 10.1111/j.1751-7915.2011.00325.x
M3 - A1: Web of Science-article
C2 - 22221490
VL - 5
SP - 396
EP - 402
JO - Microbial biotechnology
JF - Microbial biotechnology
SN - 1751-7907
IS - 3
ER -