In vivo dynamics and differential microtubule-binding activities of MAP65 proteins

Daniël Van Damme, Kris Van Poucke, Emmanuel Boutant, Christophe Ritzenthaler, Dirk Inzé, Danny Geelen

    Onderzoeksoutput: Bijdrage aan tijdschriftA2: Artikel in een internationaal wetenschappelijk tijdschrift met peer review, dat niet inbegrepen is in A1

    Uittreksel

    Plant cells produce different microtubule arrays that are essential for cell division and morphogenesis without equivalent in other eukaryotes. Microtubule-associated proteins influence the behavior of microtubules that is presumed to culminate into transitions from one array to another. We analyzed the microtubule-binding properties of three Arabidopsis (Arabidopsis thaliana) members, AtMAP65-1, AtMAP65-4, and AtMAP65-5, in live cells using laser scanning confocal microscopy. Depending on the overall organization of the cortical array, AtMAP65-1-GFP (green fluorescent protein) and AtMAP65-5-GFP associated with a subset of microtubules. In cells containing both coaligned and oblique microtubules, AtMAP65-1-GFP and AtMAP65-5-GFP tended to be associated with the coaligned microtubules. Cortical microtubules labeled with AtMAP65-1-GFP and AtMAP65-5-GFP appeared as thick bundles and showed more resistance to microtubule-destabilizing drugs. The polymerization rates of AtMAP65-1-GFP and AtMAP65-5-GFP microtubules were similar to those of tubulin-GFP marked microtubules but were different from AtEB1a-GFP, a microtubule plus-end-binding EB1-like protein that stimulated polymerization. By contrast, depolymerization rates of AtMAP65-1-GFP- and AtMAP65-5-GFP-labeled microtubules were reduced. AtMAP65-1-GFP associated with polymerizing microtubules within a bundle, and with fixed microtubule termini, suggesting that AtMAP65-1's function is to bundle and stabilize adjacent microtubules of the cortex. Polymerization within a bundle took place in either direction so that bundling occurred between parallel or antiparallel aligned microtubules. AtMAP65-4-GFP did not label cortical microtubules or the preprophase band, despite continuous expression driven by the 35S promoter, and its subcellular localization was restricted to microtubules that rearranged to form a spindle and the polar sides of the spindle proper. The expression of AtMAP65-4 peaked at mitosis, in agreement with a function related to spindle formation, whereas AtMAP65-1 and AtMAP65-5 were expressed throughout the cell cycle.

    TaalEngels
    TijdschriftPlant Physiology
    Volume136
    Exemplaarnummer4
    Pagina's (van-tot)3956-67
    Aantal pagina's12
    ISSN0032-0889
    DOI's
    StatusGepubliceerd - 2004

    Vingerafdruk

    Bekijk de onderzoeksthema's van 'In vivo dynamics and differential microtubule-binding activities of MAP65 proteins'. Samen vormen ze een unieke vingerafdruk.

    Dit citeren