Influence of damaging and wilting red clover on lipid metabolism during ensiling and in vitro rumen incubation

G. Van Ranst, V. Fievez, M. Vandewalle, C. Van Waes, J. De Riek, E. Van Bockstaele

Onderzoeksoutput: Bijdrage aan tijdschriftA1: Web of Science-artikelpeer review


This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol protein complexes
Oorspronkelijke taalEngels
TijdschriftJournal of Animal Physiology and Animal Nutrition
Pagina's (van-tot)1528-1540
Aantal pagina’s13
PublicatiestatusGepubliceerd - 2010


Bekijk de onderzoeksthema's van 'Influence of damaging and wilting red clover on lipid metabolism during ensiling and in vitro rumen incubation'. Samen vormen ze een unieke vingerafdruk.

Dit citeren