TY - JOUR
T1 - LC-MS/MS multi-analyte method for mycotoxin determination in food supplements
AU - Diana Di Mavungu, Jose
AU - Monbaliu, Sofie
AU - Scippo, Marie-Louise
AU - Maghuin-Rogister, Guy
AU - Schneider, Yves-Jacques
AU - Larondelle, Yvan
AU - Callebaut, Alfons
AU - Robbens, Johan
AU - Van Peteghem, Carlos
AU - De Saeger, Sarah
PY - 2009
Y1 - 2009
N2 - A multi-analyte method for the liquid chromatography-tandem mass spectrometric determination of mycotoxins in food supplements is presented. The analytes included A and B trichothecenes (nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, neosolaniol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin and T-2 toxin), aflatoxins (aflatoxin-B(1), aflatoxin-B(2), aflatoxin-G(1) and aflatoxin-G(2)), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin-B(1), fumonisin-B(2) and fumonisin-B(3)), ochratoxin A, zearalenone, beauvericin and sterigmatocystin. Optimization of the simultaneous extraction of these toxins and the sample pretreatment procedure, as well as method validation were performed on maca (Lepidium meyenii) food supplements. The results indicated that the solvent mixture ethyl acetate/formic acid (95:5, v/v) was the best compromise for the extraction of the analytes from food supplements. Liquid-liquid partition with n-hexane was applied as partial clean-up step to remove excess of co-extracted non-polar components. Further clean-up was performed on Oasis HLB cartridges. Samples were analysed using an Acquity UPLC system coupled to a Micromass Quattro Micro triple quadrupole mass spectrometer equipped with an electrospray interface operated in the positive-ion mode. Limits of detection and quantification were in the range of 0.3-30 ng g(-1) and 1-100 ng g(-1), respectively. Recovery yields were above 60% for most of the analytes, except for nivalenol, sterigmatocystine and the fumonisins. The method showed good precision and trueness. Analysis of different food supplements such as soy (Glycine max) isoflavones, St John's wort (Hypericum perforatum), garlic (Allium sativum), Ginkgo biloba, and black radish (Raphanus niger) demonstrated the general applicability of the method. Due to different matrix effects observed in different food supplement samples, the standard addition approach was applied to perform correct quantitative analysis. In 56 out of 62 samples analysed, none of the 23 mycotoxins investigated was detected. Positive samples contained at least one of the toxins fumonisin-B(1), fumonisin-B(2), fumonisin-B(3) and ochratoxin A.
AB - A multi-analyte method for the liquid chromatography-tandem mass spectrometric determination of mycotoxins in food supplements is presented. The analytes included A and B trichothecenes (nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, neosolaniol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin and T-2 toxin), aflatoxins (aflatoxin-B(1), aflatoxin-B(2), aflatoxin-G(1) and aflatoxin-G(2)), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin-B(1), fumonisin-B(2) and fumonisin-B(3)), ochratoxin A, zearalenone, beauvericin and sterigmatocystin. Optimization of the simultaneous extraction of these toxins and the sample pretreatment procedure, as well as method validation were performed on maca (Lepidium meyenii) food supplements. The results indicated that the solvent mixture ethyl acetate/formic acid (95:5, v/v) was the best compromise for the extraction of the analytes from food supplements. Liquid-liquid partition with n-hexane was applied as partial clean-up step to remove excess of co-extracted non-polar components. Further clean-up was performed on Oasis HLB cartridges. Samples were analysed using an Acquity UPLC system coupled to a Micromass Quattro Micro triple quadrupole mass spectrometer equipped with an electrospray interface operated in the positive-ion mode. Limits of detection and quantification were in the range of 0.3-30 ng g(-1) and 1-100 ng g(-1), respectively. Recovery yields were above 60% for most of the analytes, except for nivalenol, sterigmatocystine and the fumonisins. The method showed good precision and trueness. Analysis of different food supplements such as soy (Glycine max) isoflavones, St John's wort (Hypericum perforatum), garlic (Allium sativum), Ginkgo biloba, and black radish (Raphanus niger) demonstrated the general applicability of the method. Due to different matrix effects observed in different food supplement samples, the standard addition approach was applied to perform correct quantitative analysis. In 56 out of 62 samples analysed, none of the 23 mycotoxins investigated was detected. Positive samples contained at least one of the toxins fumonisin-B(1), fumonisin-B(2), fumonisin-B(3) and ochratoxin A.
KW - Chromatography, Liquid
KW - Dietary Supplements
KW - Limit of Detection
KW - Mycotoxins
KW - Tandem Mass Spectrometry
U2 - 10.1080/02652030902774649
DO - 10.1080/02652030902774649
M3 - A1: Web of Science-article
C2 - 19680964
SN - 1944-0049
VL - 26
SP - 885
EP - 895
JO - Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment
JF - Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment
IS - 6
ER -