TY - JOUR
T1 - Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations
AU - Honnay, Olivier
AU - Coart, Els
AU - Butaye, Jan
AU - Adriaens, Dries
AU - Van Glabeke, Sabine
AU - Roldan-Ruiz, Isabel
PY - 2006
Y1 - 2006
N2 - Decreasing habitat fragment area and increasing isolation may cause loss of plant population genetic diversity and increased genetic differentiation between populations. We studied the relation between the historical and the present landscape configuration (i.e., patch area and patch connectivity), and the present management of calcareous grassland fragments on the one hand, and the within and between population genetic structure of 18 Anthyllis vulneraria populations on the other hand. Despite the long-time fragmentation history and the mainly selfing breeding system of the species, we detected very low genetic differentiation (phi(st) = 0.056) among habitat fragments and no significant isolation-by-distance relation. Average within fragment genetic diversity measured as molecular variance and expected heterozygosity, were relatively high (16.46 and 0.28, respectively), and weakly positively correlated with the current fragment area, most likely because larger fragments contained larger populations. We found no effects of the historical landscape configuration on the genetic diversity of the populations. Our data suggest that the consequences of habitat fragmentation for genetic differentiation and genetic diversity of A. vulneraria are relatively minor which is very likely due to the historical high levels of seed exchange among fragments through grazing and roaming livestock. This study provides indirect evidence that nature management by grazing not only positively affects habitat quality but that it might also mitigate the genetic consequences of habitat fragmentation. From the conservation point of view, this study illustrates the importance of grazing and of the regular transport of livestock between fragments to prevent the long-term effects of fragmentation on the genetic diversity of the populations studied. (c) 2005 Elsevier Ltd. All rights reserved.
AB - Decreasing habitat fragment area and increasing isolation may cause loss of plant population genetic diversity and increased genetic differentiation between populations. We studied the relation between the historical and the present landscape configuration (i.e., patch area and patch connectivity), and the present management of calcareous grassland fragments on the one hand, and the within and between population genetic structure of 18 Anthyllis vulneraria populations on the other hand. Despite the long-time fragmentation history and the mainly selfing breeding system of the species, we detected very low genetic differentiation (phi(st) = 0.056) among habitat fragments and no significant isolation-by-distance relation. Average within fragment genetic diversity measured as molecular variance and expected heterozygosity, were relatively high (16.46 and 0.28, respectively), and weakly positively correlated with the current fragment area, most likely because larger fragments contained larger populations. We found no effects of the historical landscape configuration on the genetic diversity of the populations. Our data suggest that the consequences of habitat fragmentation for genetic differentiation and genetic diversity of A. vulneraria are relatively minor which is very likely due to the historical high levels of seed exchange among fragments through grazing and roaming livestock. This study provides indirect evidence that nature management by grazing not only positively affects habitat quality but that it might also mitigate the genetic consequences of habitat fragmentation. From the conservation point of view, this study illustrates the importance of grazing and of the regular transport of livestock between fragments to prevent the long-term effects of fragmentation on the genetic diversity of the populations studied. (c) 2005 Elsevier Ltd. All rights reserved.
U2 - 10.1016/j.biocon.2005.09.006
DO - 10.1016/j.biocon.2005.09.006
M3 - A1: Web of Science-article
SN - 0006-3207
VL - 127
SP - 411
EP - 419
JO - Biological Conservation
JF - Biological Conservation
IS - 4
ER -