TY - JOUR
T1 - Quantifying the impact of induced topsoil and historical subsoil compaction as well as the persistence of subsoiling
AU - Ren, Lidong
AU - Cornelis, Wim M.
AU - Ruysschaert, Greet
AU - De Pue, Jan
AU - Lootens, Peter
AU - 'Hose, Tommy
PY - 2022/10/15
Y1 - 2022/10/15
N2 - Mechanical soil compaction increasingly occurs in arable land but the state and effects of historical compaction from regular operations are still poorly documented. Therefore, a typical field was selected and the effects of both newly formed topsoil compaction and historical developed subsoil compaction (below 30 cm) on soil physical and hydraulic properties, soil water movement, soil mineral nitrogen leaching potential and crop parameters were evaluated on a Luvisol under a winter rye (Secale cereale L.) and summer maize (Zea mays L.) rotation system. Three subsoil compaction levels were included, i.e., a i) highly compacted headland zone, and a moderately compacted in-field zone ii) without and iii) with deep tillage by subsoiling in the winter of 2016. Topsoil compaction on the other hand was induced by one machine pass with a rotary cultivator in addition to the regular machine passes during field preparation for the summer maize season of 2017, and compared with a control without extra compaction. For subsoil compaction treatments, both visual evaluation and lab or field based measurements indicated that soil physical and hydraulic properties were deteriorated in the headland compared with in-field zones. As a result, both winter and summer crop above-ground biomass were decreased in the highly compacted headland zone because of the restricted root growth, which further increased the risk of soil mineral nitrogen leaching. The alleviation effect of deep tillage remained after ∼ 2 years, which significantly increased maize height in the extremely dry and hot summer of 2018. For topsoil compaction, one traffic pass with a rotary cultivator increased topsoil penetration resistance and water content but summer maize above-ground biomass was not affected. Overall, prevention and alleviation of subsoil compaction are essential in increasing the resistance and resilience to the continuing deteriorating climatic conditions.
AB - Mechanical soil compaction increasingly occurs in arable land but the state and effects of historical compaction from regular operations are still poorly documented. Therefore, a typical field was selected and the effects of both newly formed topsoil compaction and historical developed subsoil compaction (below 30 cm) on soil physical and hydraulic properties, soil water movement, soil mineral nitrogen leaching potential and crop parameters were evaluated on a Luvisol under a winter rye (Secale cereale L.) and summer maize (Zea mays L.) rotation system. Three subsoil compaction levels were included, i.e., a i) highly compacted headland zone, and a moderately compacted in-field zone ii) without and iii) with deep tillage by subsoiling in the winter of 2016. Topsoil compaction on the other hand was induced by one machine pass with a rotary cultivator in addition to the regular machine passes during field preparation for the summer maize season of 2017, and compared with a control without extra compaction. For subsoil compaction treatments, both visual evaluation and lab or field based measurements indicated that soil physical and hydraulic properties were deteriorated in the headland compared with in-field zones. As a result, both winter and summer crop above-ground biomass were decreased in the highly compacted headland zone because of the restricted root growth, which further increased the risk of soil mineral nitrogen leaching. The alleviation effect of deep tillage remained after ∼ 2 years, which significantly increased maize height in the extremely dry and hot summer of 2018. For topsoil compaction, one traffic pass with a rotary cultivator increased topsoil penetration resistance and water content but summer maize above-ground biomass was not affected. Overall, prevention and alleviation of subsoil compaction are essential in increasing the resistance and resilience to the continuing deteriorating climatic conditions.
KW - Subsoil compaction
KW - Subsoiling
KW - Nitrogen leaching
KW - Visual evaluation
KW - Drone images
UR - https://www.mendeley.com/catalogue/d9e601b7-4712-3b06-9cfa-6a1aa3f32633/
U2 - 10.1016/j.geoderma.2022.116024
DO - 10.1016/j.geoderma.2022.116024
M3 - A1: Web of Science-article
SN - 0016-7061
VL - 424
JO - Geoderma
JF - Geoderma
M1 - 116024
ER -