TY - JOUR
T1 - Scales Tell a Story on the Stress History of Fish
AU - Aerts, Johan
AU - Metz, Juriaan Rogier
AU - Ampe, Bart
AU - Decostere, Annemie
AU - Flik, Gert
AU - De Saeger, Sarah
PY - 2015/4/29
Y1 - 2015/4/29
N2 - Fish faced with stressful stimuli launch an endocrine stress response through activation of the hypothalamic-pituitary-interrenal (HPI-) axis to release cortisol into the blood. Scientifically validated biomarkers to capture systemic cortisol exposure over longer periods of time are of utmost importance to assess chronic stress in governmental, wildlife, aquaculture and scientific settings. Here we demonstrate that cortisol in scales of common carp (Cyprinus carpio L.) is the long-sought biomarker for chronic stress. Undisturbed (CTR) and daily stressed (STRESS) carp were compared. Dexamethasone (DEX) or cortisol (CORT) fed fish served as negative and positive controls, respectively. Scale cortisol was quantified with a validated ultra-performance liquid chromatography tandem mass spectrometry method. An increase in scale cortisol content was found in STRESS and CORT but not in CTR and DEX fish. Scale cortisol content reflects its accumulation in a stressor and time dependent manner and validates the scale cortisol content as biomarker for chronic stress. Plasma analyses confirmed that (i) CTR, DEX and CORT treatments were effective, (ii) plasma cortisol of STRESS fish showed no signs of chronic HPI-axis activation, and (iii) plasma cortisol is a poor predictor for chronic stress. The expression of HPI key genes crf, pomc, and star were up-regulated in STRESS fish in the absence of a plasma cortisol response, as was the target gene of cortisol encoding subunit α1 of the Na+/K+-ATPase in gills. When lost, scales of fish regenerate fast. Regenerated scales corroborate our findings, offering (i) unsurpassed time resolution for cortisol incorporation and as such for stressful events, and (ii) the possibility to investigate stress in a well defined and controlled environment and time frame creating novel opportunities for bone physiological research. We conclude that the cortisol content in ontogenetic and regenerated scales is an innovative biomarker for chronic stress offering ample applications in science and industry.
AB - Fish faced with stressful stimuli launch an endocrine stress response through activation of the hypothalamic-pituitary-interrenal (HPI-) axis to release cortisol into the blood. Scientifically validated biomarkers to capture systemic cortisol exposure over longer periods of time are of utmost importance to assess chronic stress in governmental, wildlife, aquaculture and scientific settings. Here we demonstrate that cortisol in scales of common carp (Cyprinus carpio L.) is the long-sought biomarker for chronic stress. Undisturbed (CTR) and daily stressed (STRESS) carp were compared. Dexamethasone (DEX) or cortisol (CORT) fed fish served as negative and positive controls, respectively. Scale cortisol was quantified with a validated ultra-performance liquid chromatography tandem mass spectrometry method. An increase in scale cortisol content was found in STRESS and CORT but not in CTR and DEX fish. Scale cortisol content reflects its accumulation in a stressor and time dependent manner and validates the scale cortisol content as biomarker for chronic stress. Plasma analyses confirmed that (i) CTR, DEX and CORT treatments were effective, (ii) plasma cortisol of STRESS fish showed no signs of chronic HPI-axis activation, and (iii) plasma cortisol is a poor predictor for chronic stress. The expression of HPI key genes crf, pomc, and star were up-regulated in STRESS fish in the absence of a plasma cortisol response, as was the target gene of cortisol encoding subunit α1 of the Na+/K+-ATPase in gills. When lost, scales of fish regenerate fast. Regenerated scales corroborate our findings, offering (i) unsurpassed time resolution for cortisol incorporation and as such for stressful events, and (ii) the possibility to investigate stress in a well defined and controlled environment and time frame creating novel opportunities for bone physiological research. We conclude that the cortisol content in ontogenetic and regenerated scales is an innovative biomarker for chronic stress offering ample applications in science and industry.
U2 - 10.1371/journal.pone.0123411
DO - 10.1371/journal.pone.0123411
M3 - A1: Web of Science-article
SN - 1932-6203
VL - 10
SP - e0123411
JO - PloS one
JF - PloS one
IS - 4
ER -