TY - JOUR
T1 - Slurry Spreading on a Silt Loam Soil: Influence of Tyre Inflation Pressure, Number of Passages, Machinery Choice and Tillage Method on Physical Soil Quality and Sugar Beet Growth
AU - Vanderhasselt, Adriaan
AU - Euben, Ronald
AU - D'Hose, Tommy
AU - Cornelis, Wim
PY - 2022/6
Y1 - 2022/6
N2 - Soil compaction forms a major threat to the well-functioning of agricultural soils. This threat is primarily driven by the increasing wheel loads of modern farming machinery and the increased frequency of field operations in periods when the soil is moist to wet and thus more prone to compaction. The application of slurry in early spring can have a highly detrimental impact, certainly for a crop like sugar beet, which is sensitive to soil compaction. A one-year experiment was set up on silt loam soil in the Belgian loess belt to assess the short-term impact of this field operation on soil under conventional ploughing and under non-inversion tillage. Two types of farming machinery were compared: a widely used tractor-trailer combination and a less common self-propelled slurry spreader, with the latter having higher wheel loads. Both machines were operated according to common or standard practice and a practice that aims at preventing soil compaction. For the tractor-trailer, this was with tyre inflation pressure recommended for road traffic and field traffic, respectively, corresponding with high and low tyre inflation pressure. The self-propelled slurry spreader was operated under standard and crab steering, respectively. Lowering the tyre inflation pressure to the recommended level for field traffic limited soil compaction and sugar beet yield loss. Although the effects of crab steering were less pronounced, it lowered the impact on the soil by limiting the number of passages. The overall machinery effect remained limited. The heavier self-propelled slurry spreader did not significantly increase the level of soil compactness and reduce sugar beet yield compared to the more common tractor-trailer combination. Soil under conventional ploughing showed more soil compaction, while the effectiveness of reducing tyre inflation pressure as a prevention strategy was lower compared to non-inversion tillage. The tillage practice, however, did not have any overall influence on sugar beet yield.
AB - Soil compaction forms a major threat to the well-functioning of agricultural soils. This threat is primarily driven by the increasing wheel loads of modern farming machinery and the increased frequency of field operations in periods when the soil is moist to wet and thus more prone to compaction. The application of slurry in early spring can have a highly detrimental impact, certainly for a crop like sugar beet, which is sensitive to soil compaction. A one-year experiment was set up on silt loam soil in the Belgian loess belt to assess the short-term impact of this field operation on soil under conventional ploughing and under non-inversion tillage. Two types of farming machinery were compared: a widely used tractor-trailer combination and a less common self-propelled slurry spreader, with the latter having higher wheel loads. Both machines were operated according to common or standard practice and a practice that aims at preventing soil compaction. For the tractor-trailer, this was with tyre inflation pressure recommended for road traffic and field traffic, respectively, corresponding with high and low tyre inflation pressure. The self-propelled slurry spreader was operated under standard and crab steering, respectively. Lowering the tyre inflation pressure to the recommended level for field traffic limited soil compaction and sugar beet yield loss. Although the effects of crab steering were less pronounced, it lowered the impact on the soil by limiting the number of passages. The overall machinery effect remained limited. The heavier self-propelled slurry spreader did not significantly increase the level of soil compactness and reduce sugar beet yield compared to the more common tractor-trailer combination. Soil under conventional ploughing showed more soil compaction, while the effectiveness of reducing tyre inflation pressure as a prevention strategy was lower compared to non-inversion tillage. The tillage practice, however, did not have any overall influence on sugar beet yield.
KW - soil compaction
KW - prevention strategies
KW - tyre inflation pressure
KW - crab steering
KW - repeated wheeling
KW - machinery choice
KW - tillage method
KW - sugar beet cultivation
U2 - 10.3390/land11060913
DO - 10.3390/land11060913
M3 - Article
SN - 2073-445X
VL - 11
JO - LAND
JF - LAND
IS - 6
M1 - 913
ER -