The consequences of mating over a range of parental genetic similarity in a selfing allopolyploid plant species

K. Vandepitte, H. Jacquemyn, Isabel Roldan-Ruiz, O. Honnay

    Onderzoeksoutput: Bijdrage aan tijdschriftA1: Web of Science-artikel

    Uittreksel

    In diploids, F(1) offspring performance is expected to increase with increasing genetic dissimilarity between the parents until an optimum is reached because outbreeding mitigates inbreeding depression and maximizes heterosis. However, many flowering plant species are derived through allopolyploidization, i.e. interspecific hybridization with genome doubling. This mode of plant speciation can be expected to considerably alter the consequences of inbreeding and outbreeding. We investigated the F1 fitness consequences of mating over a range of (genetic) distances in the allohexaploid plant species Geum urbanum. Offspring was raised under controlled conditions (632 plants). The performance of outcrossed progeny was not significantly better than that of their selfed half-siblings and did not increase with parental genetic dissimilarity (0-0.83). Our findings support low, if any, inbreeding depression and heterosis. We attribute this to the peculiar state of quasi-permanent heterozygosity in allopolyploids and frequent selfing.
    TaalEngels
    TijdschriftJournal of Evolutionary Biology
    Volume24
    Exemplaarnummer12
    Pagina's (van-tot)2750-2758
    Aantal pagina's9
    DOI's
    StatusGepubliceerd - 2011

    Vingerafdruk Bekijk de onderzoeksthema's van 'The consequences of mating over a range of parental genetic similarity in a selfing allopolyploid plant species'. Samen vormen ze een unieke vingerafdruk.

    Dit citeren